TwitterFacebookpinterest







architectures


VShOS

Russian Orbital Station



 

Our first cis-lunar habitat

The first human crews on long-duration missions in the vicinity of the Moon will live and work in barrel-shaped modules less than five meters long. Even today's spartan quarters onboard the International Space Station might seem luxuriously spacious when compared to the obsessively compact design of the early cis-lunar habitats.

Bookmark and Share

Read our introductory article on the subject at...

PopMech

hab

Cis-lunar habitation module at a glance:

Maximum spacecraft mass
7,390 kilograms
Body diameter
Internal: 4.2 meters; external: 4.5 meters
Full length
5.96 meters
Pressurized volume
63.7 cubic meters
Number of docking ports
4
Crew
4 (nominal); 6 (maximum possible with two modules)
Launch vehicle
Space Launch System, SLS

 

From the publisher: Pace of our development depends primarily on the level of support from our readers!
Donate

According to current plans, the living quarters of the cis-lunar station, officially known as the Cis-lunar Transit Habitat, CTH, will consist of two largely identical modules dubbed Common Habitat Element No. 1 and No. 2 or simply Hab-1 and Hab-2.

The European Space Agency, ESA, is expected to join forces with NASA to build these modules, based on Europe's experience in the highly successful Spacelab and Columbus programs, which provided Earth-orbiting modules for the Space Shuttle and the International Space Station, ISS. The Japanese aerospace agency, JAXA, also considers contributing its own habitation module or its major components.

The concept for the habitation modules was formulated by the end of 2016, after several years of consultations between the partners in the ISS project. Like the first component of the cis-lunar station, they were designed to fit into the NASA's super-heavy SLS rocket, packed below the Orion crew vehicle. At the time, the provisional flight manifest for the Orion/SLS system, called for the launch of habitation modules-1 and -2 during Exploration Missions-4 and -5 in 2024 and 2025, respectively.

In order to hitchhike into the deep space with the Orion, the mass of the module had to be kept under 10 tons. However, planners had to deduct one ton from this 10-ton limit for the Payload Adapter Fitting, which would connect the module to the rocket. Still more deductions had to be made for unexpected mass increases, leaving designers only 7,390 kilograms to work with, which is comparable to the mass of the Soyuz spacecraft.

The SLS rocket will first insert the Orion and the habitation module into the Earth's orbit along with a powerful space tug, which will fire in the direction of the Moon. Once in the trans-lunar trajectory, the crew will separate the Orion from the rocket, turn the ship around and dock it to the habitation module still attached to the empty rocket stage. The Orion/Hab stack will then separate from the rocket together.

Upon the arrival at the lunar orbit, the Orion will dock habitation modules one by one to the Power and Propulsion Bus, PPB, which would be delivered there first. The second habitation module will be rotated 90 degrees around its main axis relative to the first one, so that future visiting ships can berth at their side ports without bumping into each other with their solar arrays and antennas.

The Orion will remain docked at the outpost while the crew is tending the station, but once the expedition is over, the ship will carry the crew back to Earth, leaving the habitation module under the automated control of the PPB module.

Design of the cis-lunar habitat

Each cylindrical habitation module will have four standard docking ports, known as IDSS, two of which will be located along the main axis of the "barrel" and the two so-called "radial" ports will be on their sides. Each docking port will have a hatch with a diameter of at least one meter to let an astronaut dressed in a spacesuit float through. Small windows on the hatches of docking ports will allow view outside and between modules. The four ports will be used to attach other modules, to receive crew vehicles from Earth and lunar landers returning from the Moon, including manned vehicles, as well as robotic spacecraft, such as soil carrying probes.

Six grapple fixtures will be spread around the exterior of each habitation module to enable the attachment of the robotic arm. A series of hand rails will be strategically spread around the module to help spacewalking astronauts.

In the preliminary architecture of the module, its thermal radiator panels could double as meteoroid shields. The areas which are not covered by radiators, would have specially designed aluminum shields bolted in. Fortunately, the cis-lunar space is practically pristine when it comes to artificial space junk, removing a major hazard faced by the Earth-orbiting space stations and thus allowing the developers to consider thinner walls.

Further lightening of the structure became possible thanks to a more straight-forward accommodation of the cis-lunar module on the SLS rocket comparing to strapping its ISS-based predecessors in the cargo bay of the Space Shuttle. As of 2016, the walls of the cis-lunar hab were expected to be around three millimeters (one eighth of an inch) thick in most places but reaching five millimeters around docking ports.

The barrel-shaped structure of the module is expected to be welded out of three aluminum rings with a diameter of 4.2 meters, which will be closed on both sides by cones with a length of 0.6 meters. A special system of accelerometers will likely be used to monitor the structural health of the module during its long life in deep space.

At the beginning of 2017, the developers also began considering the addition of a cupola-like window section, which could be delivered separately and docked at various available docking ports of the module over its life span.

Interior design

Each cis-lunar habitat will be equipped with state-of-the-art life-support, thermal control, communications, navigation, power supply and fire-safety systems. Inside, the module will have living quarters for the crew with private sleeping areas, which might use inflatable design to save space.

The galley/kitchen area will be as space efficient, likely featuring a deployable dining table, which will be lowered into position only for meal time. Other conveniences will include a fridge, which will likely double storing both food and scientific samples, and a highly efficient toilet, possibly hooked up to a recycling system.

A part of the first habitation module is expected to contain an exercise machine, which might require up to 10 hours of operation per day to accommodate four crew members.

The developers also consider including a work station, possibly featuring a crew-operated 3D printer.

Finally, the hab module will have some storage areas to hold food, water, clothing and all the other items typically found today on the International Space Station, ISS.

Like on the ISS, a big part of consumables for the crew will be re-supplied as needed with the help of dedicated cargo ships. The cargo ships will also be used to dispose of trash, whose projected volume onboard the small outpost presents a particular problem for designers.

Unfortunately, the standard racks with equipment used aboard the ISS today will not fit inside the cis-lunar habitat, first of all, because hatches between modules are expected to be too small. Also, there is a pressure on engineers to develop a more weight-efficient system. As a result, an entirely new secondary structure will have to be developed for the cis-lunar module to carry equipment, cable and pipe lines throughout its interior... Engineers are still debating whether to have the module fully configured for launch or have it outfitted during the flight.

The module's radiation protection system is yet to be detailed, but initial proposals include arranging flexible water bags around crew quarters. Some internal radiation shielding could also be introduced...

(To be continued)

Next chapter: Russian-built airlock module for the cis-lunar outpost

 

Read much more about the history of the Russian space program in a richly illustrated, large-format glossy edition:

Book

 

Bookmark and Share


The article and illustrations: Anatoly Zak; Last update: April 3, 2017

Page editor: Alain Chabot; Last edit: March 28, 2017

All rights reserved

Book

 

hab

The Orion/Habitation module stack docks with the Power and Propulsion Bus, PPB, to form the human-tended outpost in the lunar orbit. Click to enlarge. Copyright © 2017 Anatoly Zak


Orion

The Orion crew vehicle undocks from the hab module at the end of Exploration Mission-4, leaving the cis-lunar outpost in automated mode. Click to enlarge. Copyright © 2017 Anatoly Zak